\(\int \frac {\sqrt {\cos (c+d x)} (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^2} \, dx\) [1116]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 130 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {4 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {(5 A-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}-\frac {(5 A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \]

[Out]

4*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-1/3*(5*A-C)*(c
os(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-1/3*(A+C)*cos(d*x+c)
^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^2-1/3*(5*A-C)*sin(d*x+c)*cos(d*x+c)^(1/2)/a^2/d/(1+cos(d*x+c))

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {4199, 3121, 3056, 2827, 2720, 2719} \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=-\frac {(5 A-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}-\frac {(5 A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a^2 d (\cos (c+d x)+1)}+\frac {4 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^2,x]

[Out]

(4*A*EllipticE[(c + d*x)/2, 2])/(a^2*d) - ((5*A - C)*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) - ((5*A - C)*Sqrt[Co
s[c + d*x]]*Sin[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - ((A + C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(3*d*(a + a
*Cos[c + d*x])^2)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3056

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3121

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x
])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 4199

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sec[(e_.)
 + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n - m - 2)*(C + A
*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sqrt {\cos (c+d x)} \left (C+A \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx \\ & = -\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {\sqrt {\cos (c+d x)} \left (-\frac {3}{2} a (A-C)+\frac {1}{2} a (7 A+C) \cos (c+d x)\right )}{a+a \cos (c+d x)} \, dx}{3 a^2} \\ & = -\frac {(5 A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {-\frac {1}{2} a^2 (5 A-C)+6 a^2 A \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{3 a^4} \\ & = -\frac {(5 A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {(2 A) \int \sqrt {\cos (c+d x)} \, dx}{a^2}-\frac {(5 A-C) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2} \\ & = \frac {4 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {(5 A-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}-\frac {(5 A-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.43 (sec) , antiderivative size = 816, normalized size of antiderivative = 6.28 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {20 A \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \left (A+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (A+2 C+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))^2}-\frac {4 C \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \left (A+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (A+2 C+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))^2}+\frac {\cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \left (-\frac {16 A \cot \left (\frac {c}{2}\right )}{d}-\frac {16 A \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{d}+\frac {4 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{3 d}+\frac {4 (A+C) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{3 d}\right )}{(A+2 C+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^2}-\frac {8 A \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (A+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d (A+2 C+A \cos (2 c+2 d x)) (a+a \sec (c+d x))^2} \]

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^2,x]

[Out]

(20*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]
*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2
]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + A*Cos[2*c + 2*d*x])*
Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^2) - (4*C*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2},
{5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x
 - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot
[c]]]])/(3*d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^2) + (Cos[c/2 + (d*x)/2]^4
*Sqrt[Cos[c + d*x]]*(A + C*Sec[c + d*x]^2)*((-16*A*Cot[c/2])/d - (16*A*Sec[c/2]*Sec[c/2 + (d*x)/2]*Sin[(d*x)/2
])/d + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(A*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/(3*d) + (4*(A + C)*Sec[c/2 + (d*x)/
2]^2*Tan[c/2])/(3*d)))/((A + 2*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])^2) - (8*A*Cos[c/2 + (d*x)/2]^4*Csc
[c/2]*Sec[c/2]*(A + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Si
n[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[
Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])
/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Co
s[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])^2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(351\) vs. \(2(172)=344\).

Time = 3.00 (sec) , antiderivative size = 352, normalized size of antiderivative = 2.71

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (24 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+10 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+24 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}-38 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+15 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+3 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} C -A -C \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(352\)

[In]

int((A+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(24*A*cos(1/2*d*x+1/2*c)^6+10*A*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+24*A*c
os(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c
),2^(1/2))-2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(
1/2))*cos(1/2*d*x+1/2*c)^3-38*A*cos(1/2*d*x+1/2*c)^4-2*C*cos(1/2*d*x+1/2*c)^4+15*A*cos(1/2*d*x+1/2*c)^2+3*cos(
1/2*d*x+1/2*c)^2*C-A-C)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*
d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 318, normalized size of antiderivative = 2.45 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=-\frac {2 \, {\left (6 \, A \cos \left (d x + c\right ) + 5 \, A - C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (\sqrt {2} {\left (5 i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (-5 i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (5 i \, A - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (-5 i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (5 i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-5 i \, A + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 12 \, {\left (-i \, \sqrt {2} A \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} A \cos \left (d x + c\right ) - i \, \sqrt {2} A\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 12 \, {\left (i \, \sqrt {2} A \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} A \cos \left (d x + c\right ) + i \, \sqrt {2} A\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

[In]

integrate((A+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/6*(2*(6*A*cos(d*x + c) + 5*A - C)*sqrt(cos(d*x + c))*sin(d*x + c) - (sqrt(2)*(5*I*A - I*C)*cos(d*x + c)^2 -
 2*sqrt(2)*(-5*I*A + I*C)*cos(d*x + c) + sqrt(2)*(5*I*A - I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*si
n(d*x + c)) - (sqrt(2)*(-5*I*A + I*C)*cos(d*x + c)^2 - 2*sqrt(2)*(5*I*A - I*C)*cos(d*x + c) + sqrt(2)*(-5*I*A
+ I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 12*(-I*sqrt(2)*A*cos(d*x + c)^2 - 2*I*sqrt
(2)*A*cos(d*x + c) - I*sqrt(2)*A)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x +
 c))) + 12*(I*sqrt(2)*A*cos(d*x + c)^2 + 2*I*sqrt(2)*A*cos(d*x + c) + I*sqrt(2)*A)*weierstrassZeta(-4, 0, weie
rstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {\int \frac {A \sqrt {\cos {\left (c + d x \right )}}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {C \sqrt {\cos {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx}{a^{2}} \]

[In]

integrate((A+C*sec(d*x+c)**2)*cos(d*x+c)**(1/2)/(a+a*sec(d*x+c))**2,x)

[Out]

(Integral(A*sqrt(cos(c + d*x))/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x) + Integral(C*sqrt(cos(c + d*x))*sec(
c + d*x)**2/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x))/a**2

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sqrt(cos(d*x + c))/(a*sec(d*x + c) + a)^2, x)

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sqrt(cos(d*x + c))/(a*sec(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \]

[In]

int((cos(c + d*x)^(1/2)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^2,x)

[Out]

int((cos(c + d*x)^(1/2)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^2, x)